New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling

نویسندگان

  • M. A. Baptista
  • J. M. Miranda
  • F. Chierici
چکیده

In the last years, large effort has been done to carry out multi-channel seismic reflection surveys (MCS) in SW Iberia to locate the active tectonic structures that could be related to the generation of the 1755 Lisbon earthquake and the tsunami. The outcome of these researches led to the identification of a large, compressive tectonic structure, named Marquês de Pombal thrust that, alone can account for only half the seismic energy released by the 1755 event. However, these investigations have shown the presence of additional tectonic structures active along the continental margin of SW Iberia that are here evaluated to model the tsunami waves observed along the coasts of Iberia, Morocco and Central Atlantic. In this paper we present a new reappraisal of the 1755 source, proposing a possible composite source, including the Marquês de Pombal thrust fault and the Guadalquivir Bank. The test of the source is achieved through numerical modelling of the tsunami all over the North Atlantic area. The results presented now incorporate data from the geophysical cruises and the historical observation along the European coasts and also from the Western Indies. The results of this study will, hopefully, improve the seismic risk assessment and evaluation in the Portuguese territory, Spain, Morocco and Central/North Atlantic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress

The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...

متن کامل

Numerical Modeling of Tsunami Waves Associated With Worst Earthquake Scenarios of the Makran Subduction Zone in the Jask Port, Iran

The recent studies show that the past researches may have significantly underestimated earthquake and tsunami hazard in the Makran Subduction Zone (MSZ) and this region is potentially capable of producing major earthquakes. In this study, the worst case possible earthquake scenarios of the MSZ are simulated using fully nonlinear boussinesq model to investigate tsunami hazards on the Jask Port, ...

متن کامل

Probabilistic Earthquake–Tsunami Multi-Hazard Analysis: Application to the Tohoku Region, Japan

This study develops a novel simulation-based procedure for the estimation of the likelihood that seismic intensity (in terms of spectral acceleration) and tsunami inundation (in terms of wave height), at a particular location, will exceed given hazard levels. The procedure accounts for a common physical rupture process for shaking and tsunami. Numerous realizations of stochastic slip distributi...

متن کامل

Modeling near‐field tsunami observations to improve finite‐fault slip models for the 11 March 2011 Tohoku earthquake

[1] The massive tsunami generated by the 11 March 2011 Tohoku earthquake (Mw 9.0) was widely recorded by GPS buoys, wave gauges, and ocean bottom pressure sensors around the source. Numerous inversions for finite‐fault slip time histories have been performed using seismic and/ or geodetic observations, yielding generally consistent patterns of large co‐seismic slip offshore near the hypocenter ...

متن کامل

Fault parameters of the 1896 Sanriku Tsunami Earthquake estimated from Tsunami Numerical Modeling

The June 15, 1896 Sanriku earthquake generated devastating tsunamis with the maximum run-up of 25 m and caused the worst tsunami disaster in the history of Japan, despite its moderate surface wave magnitude (Ms=7.2) and weak seismic intensity. This is a typical tsunami earthquake, which generates anomalously larger tsunamis than expected from its seismic waves. Previously proposed mechanisms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003